
FORTH - 79· ST AND ARD
CONVERSION

v. l.l
9/15/81

FORTE-79 STANDARD CONVERSION

Robert L, Smith

Version 1.1

September 15, 1981

Copyright (C) 1981 by R, L, Smith
% Mt. View Press, Mountain View, CA

FORTH-79 STANDARD CONVERSION

There are a number of owners of fig-FORTH systems who
desire to convert over to FORTE-79 Standard. This package is
designed to aid the conversion process. The principal part of
the package is a series of screens which can be loaded on most
fig-FORTH systems. When these screens are loaded and the other
changes made as indicated below, your system should conform to
the official designation:

FORTH-79 Standard with Double-Number Standard Extensions

Using the system will allow you to create and load FORTH-79
Standard programs. Note however that there is not extensive
error checking in this package. Users must take some care in
writing application programs to ensure that the program meets
the requirements of the FORTH-79 Standard.

The definitions to be loaded are written in high level for
maximum transportability. As a consequence, some of the
definitions are considerably slower than they should be.
Appropriate comments have been inserted in the source screens
to indicate definitions which should be re-coded in machine
language.

There are two areas in which additional coding is required
before your system will be 79-Standard. The Standard requires
that a block of mass storage hold 1024 byte. BLOCK and BUFFER
in the fig-FORTE implementations are usually smaller, and the
definitions are implementation dependent. Note also that the
79-Standard requires that BLOCK 0 be accessible. Some
fig-FORTH systems begin at BLOCK l. You should modify your
system appropriately. The other major pro·blem area is in the
word DOES> • There is no suitable way to write the 79-Standard
version of DOES> in high level, since at least a portion is
written in machine code, and other parts need constants which
relate to machine code dependencies. A set of notes is
included to aid you in converting your system over to the new
form.

For certain word-oriented machines, such as the PDP-11,
strict adherence to the 79-Standard requires that certain
functions such as @ and l be re-written to allow word
manipulations on odd addresses. These functions are found at
Screen 38, and need not be loaded for byte-oriented computers.
There are some machines, such as the PACE, for which the
overlay in Screen 38 is inappropriate.

If you
screens 1,?orth
process.

do not have a fig-FORTE system, you may find the
studying for suggestions on your conversion

Pagel

BLOCK 30

(FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH}
DECIMAL

>IN
?DUP
NEGATE
EXIT
CONVERT
NOT
U/MOD
DNEGATE
2*
2/

IN;
-DUP;
MINUS ;
R> DROP
(NUMBER} ;
0= ;
U/;
DMINUS ;
DUP +; (NOTE: NOT A 79-STANDARD WORD}
{ NOTE: NOT A 79-STANDARD WORD. }
(SHOULD BE WRITTEN IN CODE}
S->D 15 0 DO OVER OVER D+ LOOP SWAP DROP;

R@ R> R SWAP >R; (OR CHANGE HEADER OF R}
; s COPYRIGHT (Cl 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 31

FIG->79-STANDARD. COPYRIGHT 1981 BY R, L. SMITH
D- DMINUS D+;
DEPTH (CHECKOUT CAREFULLY SP@ S0@ SWAP - 2/;
SAVE-BUFFERS FLUSH;
U. 0 D. ;
0> DUP IF 0< 0= THEN;
1- l - ;
2- 2 - ;
D< . (EASIER IN CODE }

ROT OVER OVER=
IF ROT ROT D- 0< SWAP DROP
ELSE SWAP< SWAP DROP SWAP DROP
THEN ;

: U< 0 SWAP 0 D< ;

;S COPYRIGHT (C} 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 32

(FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH
: PICK DUP 0>

PLUNK
SPREAD
SLIP

ROLL

FILL

IF 2* SP@+@
ELSE .• PICK ARGUMENT< 1 "CR DROP
THEN ;
2 * SP@ + ! ;
OVER SWAP 2* SP@ 2+ DUP 2+ SWAP ROT CMOVE
2* SP@ +
BEGIN DUP 2 - @ OVER
DROP DROP;
DUP 1 <

2 - SP@ OVER> 0= UNTIL

IF .• ROLL ARGUMENT< l "CR DROP
ELSE l+ DUP PICK SWAP SLIP THEN ;
OVER 0>
IF FILL ELSE DROP DROP DROP THEN;

;S COPYRIGHT (C} 1981 BY ROBERT L. SMITH, PALO ALTO, CA

Page 2

BLOCK 33

(FIG->79-STANDARD.
FORTH DEFINITIONS

COPYRIGHT 1981 BY R. L. SMITH)

: -FINDl @@ BL WORD DUP

-FIND-
(NOW PATCH

FIND
: VOCABULARY

CREATE
: VARIABLE
: (

IF HERE SWAP (FIND) DUP 0= ELSE l THEN
IF DROP HERE (1 FORTH 4 +] LITERAL

@ (FIND) THEN;
CONTEXT -FINDl.R> DROP;

-FIND) 1 -FIND- CFA 1 -FIND!
-FIND IF DROP ELSE 0 THEN;
<BUILDS 41089 (A081 HEX) , 0 ,
HERE VOC-LINK@, VOC-LINK
DOES> 2+ CONTEXT! ;
0 VARIABLE -2 ALLOT;
-32768 VARIABLE;
-1 >IN+! [COMPILE] (; IMMEDIATE

;S COPYRIGHT (C) 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 34

(FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH)
: FORGET CURRENT -FINDl 0=

IF .• NOT IN CURRENT VOCABULARY• CR
ELSE DROP NFA DUP FENCE@ U< 21 ?ERROR

>RR@ CONTEXT@ U< IF [COMPILE] FORTH THEN
R@ CURRENT@ O<
IF [COMPILE] FORTH DEFINITIONS THEN
VOC-LINK@
BEGIN R@ OVER U< WHILE@ DUP voe-LINK ! REPEAT
BEGIN DUP 4 -

BEGIN PFA LFA@ DUP R@ O< END
OVER 2- ! @ ?DUP 0=

END R> DP!
THEN;

VARIABLE POCKET 258 ALLOT (TO HOLD STRING FROM WORD)
;S COPYRIGHT (CJ 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 35

(FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH)
: SCAN> (-- ADDR)

BLK@
IF BLK@ BLOCK
ELSE TIB@
THEN >IN@+;

: WORD (CHAR ADDR)
DUP 0= IF DROP l .• BAD DELIMITER" CR THEN
SCAN> SWAP DUP >R ENCLOSE DUP >IN+!
OVER OVER> IF SWAP DROP DUP THEN
OVER OVER= IF R> DROP 0 >R THEN
DROP OVER - DUP 255 >
IF " CHARACTER STRING TOO LONG" CR 255 THEN
>RR@ POCKET C! + POCKET l+ R@ CMOVE
POCKET R> + l+ R> SWAP C! POCKET;

;S COPYRIGHT (C) 1981 BY ROBERT L. SMITH, PALO ALTO, CA

Page 3

BLOCK 36

FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH)
• SCAN> C@ 34 = NOT

IF [COMPILE] . " ELSE l >IN + ! THEN ;
IMMEDIATE

THE ABOVE DEFINITION SHOULD HANDLE THE NULL STRING CASE)
THE FOLLOWING 3 DEFINITIONS MAY NOT BE NEEDED)
(DO) R ROT >R SWAP >R >R;
DO COMPILE (DO) ; IMMEDIATE
I R> R SWAP >R;
THE NEXT THREE DEFINITIONS SHOULD BE WRITTEN IN CODE)
FOR SPEED AND SAVING BYTES)
J R> R> R> R> R SWAP >R SWAP >R SWAP >R SWAP >R;
(LOOP) R> R> l+ DUP R <

IF R> R SWAP >R SWAP >R >R DROP
ELSE DROP R> DROP R> DROP >R THEN;

;S COPYRIGHT (C) 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 37

FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH
THE NEXT DEFINITION SHOULD BE WRITTEN IN CODE)
(+LOOP) R> SWAP DUP S->D R> S->D D+ ROT 0<

LOOP
+LOOP

IF OVER _OVER R S->D D<
IF DROP DROP R> DROP >R DROP R>
ELSE DROP R> R SWAP >R SWAP >R >R DROP THEN

ELSE OVER OVER R S->D D<
IF DROP R> R SWAP >R SWAP >R >R DROP
ELSE DROP DROP R> DROP R> DROP >R THEN

THEN;
COMPILE (LOOP) ; IMMEDIATE
COMPILE (+LOOP) ; IMMEDIATE
[COMPILE] : (NOTE: NOT IMMEDIATE)

;S COPYRIGHT (C) 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 38

(FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH)
(THE FOLLOWING DEFINITIONS ARE FOR WORD-ORIENTED
MACHINES LIKE THE PDP-11. IF USED, RE-WRITE IN CODE)
VARIABLE %1TEMP 0 ,

OLD@ @ ;
OLD! ! ;
@ DUP C@ %1TEMP C! l+ C@ %1TEMP l+ C! %1TEMP@;
? @ • ;

SWAP %1TEMP ! DUP %1TEMP C@ SWAP C! %1TEMP l+
C@ SWAP l+ C! ;

+! DUP@ ROT+ SWAP! ;
2@ 4 0 DO DUP I+ C@ %1TEMP I+ C! LOOP

DROP %1TEMP OLD@ %1TEMP 2+ OLD@ ;
2! SWAP %1TEMP OLD! SWAP %1TEMP 2+ OLD!

4 0 DO %1TEMP I+ C@ OVER I+ C! LOOP DROP;
;S COPYRIGHT (C) 1981 BY ROBERT L. SMITH, PALO ALTO, CA

Page 4

BLOCK 39

FIG->79-STANDARD. COPYRIGHT 19B1 BY R. L. SMITH J
ADD NEXT 2 DEFINITIONS IF SCREEN i38 WAS NOT LOADED
2@ DUP 2+@ SWAP@;
2! OVER OVER 2+ SWAP DROP ! ;
2CONSTANT CREATE , DOES> 2@;
2DROP DROP DROP;
2DUP OVER OVER;
2OVER 4 PICK 4 PICK;
2ROT 6 ROLL 6 ROLL

: 2SWAP 4 ROLL 4 ROLL;
2VARIABLE VARIABLE 0 , ;
D0= OR 0= ;
D= D- D0=;
DMAX 2OVER 2OVER D< IF 2SWAP THEN 2DROP;
DMIN 2OVER 2OVER D< IF 2DROP ELSE 2SWAP 2DROP THEN:

:S COPYRIGHT (CJ 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 40

FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITH
DU< 3 PICK OVER= IF DROP SWAP DROP

ELSE SWAP DROP ROT DROP THEN U<;
MOVE

CMOVE

DUP l <
IF DROP DROP DROP
ELSE 2* CMOVE
THEN;

DUP l <
IF DROP DROP DROP
ELSE CMOVE
THEN;

;S COPYRIGHT (CJ 1981 BY ROBERT L. SMITH, PALO ALTO, CA

BLOCK 41

(FIG->79-STANDARD. COPYRIGHT 1981 BY R. L. SMITHJ
: FATHER CREATE 1979, DOES>;
FATHER SON
(THE NEW DOES> AND BLOCK AND BUFFER MUST BE INSTALLED J
: 79-STANDARD

' SON@ 1979 = 0=
B/BUF 1024 - OR IF
CR THEN;

• NOT 79-STANDARD SYSTEM"

(SET UP FENCE TO PROTECT THE NEW SYSTEM J
HERE FENCE !

;S COPYRIGHT (C) 1981 BY ROBERT L. SMITH, PALO ALTO, CA

Page 5

Imolementing t.he ll-Standard rn>

In fig-FORTH, DOES> is .. a word used in conjunction with
<BOILDS to define new classes of defining words. In
79-Standard FORTH, DOES> performs a similiar role in
conjunction with the word CREATE • There are some differences
between the two constructs. In the fig-FORTH model, <BUILDS
allocates the first word in the parameter field of a new word.
In the 79-Standard, CREATE does not allocate that position. A
result of the 79-Standard implementation is that the parameter
field address of newly created words points to the first
parameter, as we would tend to assume. Such is not the case
with the fig-FORTH model. An additional difference is that the
79-Standard DOES> is an immediate word, whereas the fig-FORTH
version is not.

The new version of DOES> is closely allied with :CODE •
Indeed, in creating a new defining word the action of the new
DOES> is to emplace (;CODE) after the high level compile time
sequence, followed by a very short code fragment which switches
control back to the high level interpreter.

Because the action of DOES> involves some machine language
code and a detailed knowledge of particular implementations, it
is not possible to make a general overlay for the new DOES> •
If you wish to convert your present DOES> to the 79-Standard
DOES> , it will be necessary to understand exactly how your
present system handles the following entities:

IP the FORTH Interpretive Pointer
RP the FORTH Return Stack Pointer
SP the FORTH Parameter Stack Pointer
BP the machine Hardware Stack Pointer
W the FORTH Intermediate Address Pointer

These pointers may reside in hardware registers or as simple
memory locations. There is a no fixed rule on the precise
nature of the pointers between various machines. IP, for
example, may point to the current word being interpreted, or it
may point to the next word to be interpreted. On some machines
(such as the 8080), W is only partly incremented past the
current word, and is fully incremented only when it is
required. We will use a pseudo-machine for part of the
following exposition, For that machine we will assume that all
the pointers, except the hardware stack pointer, reside in
memory.

Suppose we make a defining word VECTOR as follows:

: VECTOR CREATE 2* ALLOT DOES> SWAP 2~ +;

Assume that VECTOR is used to make a vector named Vl by the
construction:

5 VECTOR Vl

Page 6

Further assume that Vl is used within another definition:

: TEST . . . I Vl I ...
The dictionary structure of these three words is shown in
Figure l,

In the dictionary entry for VECTOR we see an unusual set
of entries where DOES> might otherwise be expected to appear.
Note again that DOES> is an immediate word, Its action takes
place when compiling the word VECTOR. It ernplaces the high
level word (;CODE) and then a small piece of code, namely JSR
OODOES. The JSR means a machine language •Jump to Subroutine•
instruction, and OODOES is that address to which control is to
be transfered. When the JSR is executed, we assume that the
machine address immediately following the complete instruction
is pushed onto the hardware stack. We have given the address
of the JSR the name DOVECTOR, which indicates the run-time
action of words created by VECTOR. Note that the code field
of Vl points to OOVECTOR, which is machine code.

Consider that the word I within the word TEST is being
executed. We assume that IP has been post-incremented, and
therefore points to the next word, Vl, in TEST, and has the
value indicated by IP0 in Figure l. When I is finished,
control will be transfered to NEXT. Execution of NEXT will
place the contents of what IP is pointing to, namely Vl, into
W. IP will be incremented by 2 bytes to the value IPl. W
will be incremented by 2, to have the value Wl. Finally
control is passed to the location named at Vl, namely
OOVECTO.R •

The following is pseudo-machine code for DOOOES . .
DOOOES: DEC RP ; push IPl on Return Stael::.

DEC RP
MOVE IP, {IP)
MOVE (HS), IP , Top of hardware stack to IP
INC BS 1 and adjust hardware stack.
INC BS
DEC SP 1 Push Wl on Parameter Stack.
DEC SP
MOVE W, (SP)

NEXT: MOVE {IP) ,W J (IP2) -> W
INC IP 1 Post-increment IP to IP3,
INC ·1p
MOVE (W) ,TEMP
INC w 1 Post-increment w
INC w
JOMP (TEMP) r Execute the next word.

At DOOOES, the current value of IP, namely IPl,
the Return Stack. The top of the hardware stack
IP. {Note that for some machines this value
appropriately incremented or decremented first).

is pushed onto
is placed in
!!lay have to be

The value in

Page 7

w (pointing to the parameter field of Vl) is pushed onto the
parameter stack. (Again, for certain machines this value may
need some adjustment). Finally, NEXT is executed, which will
begin high level interpretation at IP2. When the word EXIT is
executed at the end of VECTOR, high level control will revert
back to the point IPl in word TEST.

The only additional information
of DOES> • This will vary somewhat
The general format of the definition

required is the definition
with the implementation.
is:

: DOES>
?CSP COMPILE (1CODE)
nnnn (value of JSR code
mmmm (address of DODOES IMMEDIATE

If the JSR is a single byte, you may either change the comma to
C, or insert a NOP instruction. I have assumed the simple kind
of JSR instruction where the actual address follows the JSR.
In some machines, an offset may be required. If DODOES is
created using a CODE word, you may have to compensate to get
the actual starting address. If your machine does not have a
JSR or its equivalent, you may have to be somewhat more
creative.

If you have not already redefined CREATE to be compatible
with the 79-Standard, one simple definition is:

: CREATE VARIABLE -2 ALLOT ;

This assumes that the 79-Standard version of VARIABLE is
active. Otherwise the definition would be:

: CREATE 0 VARIABLE -2 ALLOT ;

The following are notes and suggestions for various
machines known to have implementations in fig-FORTH. Some of
the code has not been tested by the author, and can therefore
be used only as a rough guide, In the PDP-11 (fig-FORTH
version 1.2), IP is a hardware register (i2), and it is
post-incremented at NEXT. SP is hardware register 13. RP is
the same as the hardware Stack Pointer (i6). W is hardware
register tl, and it is post-incremented in NEXT (in version
1,2). NEXT is a macro which is expanded in-line into the
following 2 word sequence:

MOV (IP)+,W
JMP @(W)+

In the PDP-11, a simple trick speeds up DODOES, The JSR
that is inserted after the (;CODE) specifies the use of
register 42 (IP), The destination address is DOVAR, the code
routine used for putting the address of a variable on the
parameter stack. DODOES itself is completely eliminated! When

Page B

the JSR is executed, the value of IP will be pushed onto the
return stack (the same as the hardware stack), and the nominal
return address will be placed in the IP register. The function
of OOVAR is to push the value in Won the parameter stack, then
execute NEXT, which will start high level interpretation where
desired.

The form of OOES> for the PDP-11 is currently in a
pre-compiled form which has the general effect of the following
definition:

OCTAL
: DOES>

4237
?CSP COMPILE (;CODE)

LIT OOVAR , ; IM.MEDIATE

The JSR instruction in normal MACRO assembly language would
appear as:

JSR IP,@tDOVAR

DOVAR is defined in MACRO as follows:

DOVAR: MOV W,-(S)
NEXT

where NEXT is expanded as discussed above.

In the 6800, IP is a pointer kept in memory. It is
different from most of the other fig-FORTH implementations in
that IP is pre-incremented in NEXT, and therefore points to the
word currently undergoing high-level interpretation.
Similiarly, W is not post-incremented and therefore points to
the Code Field Address (CFA) of a machine language or code
word. RP is a memory location which points to the first free
word of the return stack (the reason relates to indexing which
can only be positive), The machine stack pointer is the
parameter stack pointer SP. Bowever, SP actually points to the
first free byte of the stack, (There is a compensating
modification when the, stack pointer is moved to the index
register with a TSX instruction). The following code appears
to be appropriate for the 6809 DODOES:

Page 9

DODOES: LDX RP
DEX
DEX
STX RP
LDAA IP+l
STAA 3,X
PULA
STM IP
PULA
STAA IP+l
LDX w
INX
INX
STX w
LDAA W+l
PSHA
LDAA w
PSHA
LDX IP
LOX e,x
STX w
LOX s,x
JMP e,x

The form of DOES> is something like:

HEX
: DOES> ?CSP COMPILE (;CODE)

0BO c,
nnnn (address of DOOOES) I

. •
IMMEDIATE

The following implementation of the new form of DOES> on
the 6502 was supplied by Bill Ragsdale in the format used in
the fig-FORTH implementation notes. Note that IP is
post-incremented in NEXT, that Wis not post-incremented (it
points to the CFA of the current word being executed), and that
the hardware stack is used for the Return Stack. Those
unfamiliar with the 6502 should note that the JSR instruction
behaves in an unexpected way: the address pushed onto the
hardware stack is one location less than the actual address to
which control will ultimately be returned. This is compensated
in the Return instruction to return control to the correct
location.

Page lll

: (;CODE)

HEX
: DOES>

R> LATEST PFA CFA I ;

COMPILE (;CODE) 20 C,
COMPILE [HERE 4 + IMMEDIATE

ASSEMBLER
DEX, DEX, CLC,
W LOA,
2 t ADC,
BOT STA, W+2 to parameter stack)
TYA,
W l+ ADC,
BOT l+ STA,
SEC, PLA,
1 t SBC,
W STA,
PLA,
0 i SBC,
W l+ STA,
1 QOIT CFA@ JMP, jumps to DOCOLON)

The 8080 is a very common microprocessor for implementing
FORTH. In the fig-FORTH model, IP is generally held in the B
and C hardware registers. IP is post-incremented in NEXT. At
the end of execution of NEXT, W is held in the D and E
registers. It is incremented 1 byte past the CFA of the
current word being executed. (Since it is rarely used, it is
not worth the machine time to further increment it until
needed). The following code may be loaded without an assembler
(fig-FORTH version 1.1 is assumed) :

HEX
28 +ORIGIN CONSTANT RPP (RP POINTER)
45 +ORIGIN CONSTANT NEXT (LOCATION OF NEXT)
: DOES> ?CSP COMPILE (;CODE) CD (CALL) c,

COMPILE [HERE 4 + , l ; IMMEDIATE
(DODOES STARTS HERE)
13 c, (INX D)
2A c, RPP, (LHLD RPP)
2B c, (DCX H)
70 c, (MOV M,B)
2B c, (DCX H)
71 c, (MOV M,C)
22 c, RPP, (SHLD RPP)
Cl c, (POP B)
D5 c, (PUSH D)
C3 c, NEXT, (JMP NEXT)

Page 11

Response t..o Error cooditioos

The 79-Standard requires that a Standard System be
provided with a tabulation of the action taken for all
specified error conditions, Since the information provided in
this document covers a variety of implementations and machines,
the actions specified below will not be appropriate for all
cases. ose the following list as a guide-line and check list
for error conditions. The author would appreciate feedback
from users on conditions that he has missed.

The following is
only during compilation.
an error condition.

+LOOP . • ;CODE
>R
BEGIN
COMPILE
DOES>

a list of words which may be executed
Their use outside of compilation is

ELSE R>
EXIT R@
I REPEAT
IF TEEN
J U?lTIL
LEAVE WHILE
LOOP [COMPILE]

SIGN

The word SIGN is included in the list because it is so listed
in the 79-Standard, but it appears that its designation as
•compile-only" is a probable typographical error, Only the
following words from the above list are likely to be flagged as
an error when used outside of a colon definition:

+LOOP DOES>
ELSE
IF

LOOP
ONTIL . ,

BEGIN

When used in a fig-FORTE system with the overlays and added
code suggested in this document, the normal error message for
using these words outside of a colon definition is •coMPILATION
ONLY, USE ONLY IN DEFINITION".

There are error conditions associated with specific words.
A list of these words, associated errors, and system response,
if any, appears below,

t Error if not used between <t and t>. No system check.

ts Error if not used between <I and t>. No system check.

Error if following name not found in dictionary. Osual
system response is to print the offending name and a
question mark "?".

Error if input stream is exhausted befor terminating
right parenthesis is found. No error message given.

Page 12

I

* Error if product greater than 15 bits plus sign. Usual
system response is truncated low order 16 bits of the
product. Normally no error message is given.

*/ Error if division by 0 or quotient overflows. System
response is undefined, or depends on the particular
installation.

*/MOD Error if division by e. System response is either
undefined or system dependent.

+ Error if sum overflows. usual system response returns
the 16 bit truncated unnormalized sum. Normally no
error message is given.

+I Error if sum overflows. Normally no error message is
given.

+LOOP Error if not matched by a preceeding DO • No system
error in current version, Possible error if preceeded
by an argument with value of e. Current system treats
0 as a positive number for the purposes of determining
looping condition.

Error if the difference overflows. Usual system
response returns a 16 bit value similiar to that of the
case of overflow from addition, Usually no error
mess-age is given.

-TRAILING Error if character count is negative. No error
message is given. Character count may be reduced by
one.

I Error if division by e. System response is highly
system dependent.

/MOD Error if division by e. Sytem response is highly
system dependent.

l+ Error if sum overflows. See+.

1- Error if difference overflows. See - .
2+ Error if sum overflows. See+.

2- Error if difference overflows, See - •

79-STANDARD Error if 79-Standard system not available. Current
version checks block size, If not 1024 bytes long,
prints• NOT 79-STANDARD SYSTEM•.

Page 13

Although not specified by the 79-Standard, if the new
name has been previously defined in either the CONTEXT
vocabulary or in FORTH, the warning message "ISN'T
UNIQUE" is printed on most systems. An error also
occurs if a word to be compiled is not found in the
dictionary and is not convertable into a number. The
usual system response is to print the offending word
with a following •1•.

; Error if input stream from mass storage is terminated
while compiling and before a•;• is encountered. When
the end of the input stream is encountered while
compiling, the error message "EXECUTION ONLY" will be
given on most systems.

>IN Error if the value at >IN is outside of the range 0 to
1023. No system response.

>R Error if not balanced inside of a colon definition with
a matching R> • No predictable system response.

ABS

BASE

BLOCK

Error when the argument is
number. Probable system
argument unchanged with no

the most negative 16 bit
response is to return that

error message.

Error if the value at BASE is outside of range 2 to 70.
Most systems do not check this range.

Error if not matched by UNTIL or
within the current definition.
at end of definition.

WHILE ••• REPEAT
Error may be detected

Error if specified block is unavailable.
response is system dependent.

System

BUFFER Error if previous block cannot be written to mass
storage. Response is system dependent.

CMOVE

CONVERT

Error if count is less than l. Usual system response
is to treat the count as an unsigned number.

Probable error if at least part of the
occurs outside of the specified string.
do not check for this.

conversion
Most systems

D+ Error occurs if sum overflows. Result is system
dependent. Normally no error message is given.

D-

DABS

Error if difference causes an overflow, Result is
sytem dependent. Normally no error message is given.

Error if argument is the most negative double precision
number. Result is system dependent. Normally no error
message is given.

Page 14

DNEGATE Error if the argument is the most negative
precision value. Result is system dependent.
no error message is given.

double
Normally

DO Error if not matched later in the same colon definition
by LOOP or +LOOP. Error may be detected at the end of
the definition.

ELSE Error if not preceeded by IF and followed by THEN
within the current colon definition. An error message
is normally given in a fig-FORTH system.

EXIT Error if used within a DO •••
or within a >R ••• R> pair.
for these possibilities.

LOOP, a DO ••• +LOOP,
Most systems do not check

FORGET Error if the following name is not found in the CURRENT
or FORTH vocabulary. In this system, the error message
·NoT IN CURRENT VOCABULARY· is given if the name is not
found. Error if the FORGETting procedure would destroy
part of the basic system or the 79-STANDARD vocabulary.
The usual error message for this case is ·IN PROTECTED
DICTIONARY•.

HOLD

I

IF

J

LEAVE

LIST

LOAD

LOOP

Technically an error if used outside of <t •••
No system response for this error.

t>.

Error if used outside of DO •••
+LOOP. No sytem response.

LOOP or DO •••

Error if not followed by
definition. Error is
definition,

TEEN in the current colon
usually detected at end of the

Error if used outside of DO •••
+LOOP. No system response.

LOOP or DO •••

Error if used outside of DO... LOOP or DO •••
+LOOP. Usually no check is made for this error, and
the results are unprecdictable.

Note that some systems may not be able to list screen
0. Note: Since fig-FORTH systems usually use screens
4 and 5 to hold error messages, this is a potential
source of strange error messages from disks or programs
which use these screens ior other purposes.

Error if specified block cannot be loaded from mass
storage. Result is system dependent.

Error if not preceeded by DO within the current colon
definition. This error not checked in the version
defined in this document.

MOD Error if division by 0. Result is system dependent.

Page 15

MOVE Error if the specified addresses are not on cell
boundaries. Most systems do not check this.

NEGATE Error if argument is the most negative single precision
value. Result is system dependent, but the usual
result is to return the same value,

FICK Error if argument is less than 1, System response is
message "FICK ARGUMENT< l".

R> Error if not matched by >R
This condition is rarely
usually fatal.

in current colon definition.
checked. The results are

R@ Error if used outside of >R ••• R> pair, Not checked
by most systems.

REPEAT Error if not preceeded by BEGIN and WHILE within the
current colon definition. This condition is checked in
most fig-FORTH systems and results in the error message
"CONDITIONALS NOT PAIRED",

ROLL Error condition if the argument is less than l. System
response is the message• ROLL ARGUMENT< 1•.

SAVE-BUFFERS Error condition results if mass storage writing is
not completed. Response is system dependent.

SIGN

THEN

0/MOD

UNTIL

WHILE

WORD

Error if used outside of <t and t> pair. Most systems
do not check for this.

Error if not preceeded by IF in
definition. This condition is
fig-FORTH systems and results
"CONDITIONALS NOT PAIRED".

the current colon
checked in most

in the message

Error if division by 0. Result is system dependent.

Error if not preceeded by BEGIN in current colon
definition. In most fig-FORTH systems the error
message "CONDITIONALS NOT PAIRED" is given.

Error if not preceeded by BEGIN in the current colon
definition. Condition generally not checked. Error if
not followed by REPEAT in the same definition. This
error may be checked at the end of the definition.

Error if character specified is null. The current
version prints an error message "BAD DELIMITER" and
replaces the value of 0 representing the null with the
value of l. An error condition also arises if the
string length exceeds 255. In the current version, an
error message "CH~.RACTER STRING TOO LONG" is printed.

Page 16

other errors.

There are a number of other errors which may occur. The
fig-FORTH system may detect some of these. A common error is
an insufficient number of parameters on.the stack, When this
results in a stack empty or stack underflow condition, the
message "EMPTY STACK" is usually printed. Some systems check
to see that sufficient room remains when space is allocated in
the dictionary. If not, the usual error message is "DICTIONARY
FULL". If the stack is found to be in an overflow condition,
for those implementations that check for it the error message
"FOLL STACK" is usually printed.

suggested Osage Rules

In addition to the rules of usage suggested in the 79-Standard,
the following rules are suggested to minimize transportability
problems:

(1) Do not use empty strings as in () or.•• • There
are only a few implementations of the 79-Standard which handle
null strings in strict accordance with the Standard, Note that
this version is in compliance.

(2) If you are moving characters resulting from the use of
WORD to newly created dictionary space, first transfer the
characters to an intermediate buffer, then create the new
space, and finally move the characters from the buffer to the
desired final position.

(3) Do not use I or J as addresses within a DO-loop. The
result may work on some systems, but not all, Since the
79-Standard uses pure signed numbers in DO-loop calculations,
if a region of memory crosses the boundary between the lower
half and the upper half of the 64 Kbyte memory space, use of I
or J will lead to anomolous results.

(4) For double precision literal numbers, use only a
trailing period•.• to indicate such a number, Most systems
will recognize the resulting number as double precision.

corrections

See FORTH DIMENSIONS for possible corrections to this
document.

Page 17

VECTOR CR[AH 2H: All.OT 00[5) SWAP 2~ • ;

OOV[CTOR:

6VECTOR I I.INK 1oocoqcR£AT£ I 21< I ALLOT I (;cooE) I JSR ooooE5 I swAP 1 211 I + I 011

t t
IPZ IPJ

5 \/ECTOR Ill

v1:
2VI I LINK I OOVECTOR I VALO I VALi I VAL2 I VAU I VAL4

w! \ J,

TEST I VI I

I 4Tf5T I DO COL I 111 ---~

t t
11'0 IPI

Figure 1. Example of uee of 79-Standard DOES>

